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In this paper, we introduce a parallelized version of a novel, non-iterative domain decom-
position algorithm, called Characteristic Basis Finite Element Method (CBFEM-MPI), for
efficient solution of large-scale electromagnetic scattering problems, by utilizing a set of
specially defined characteristic basis functions (CBFs). This approach is based on the decom-
position of the computational domain into a number of non-overlapping subdomains
wherein the CBFs are generated by employing a novel procedure, which differs from all
those that have been used in the past. Clearly, the CBFs are obtained by calculating the
fields radiated by a finite number of dipole-type sources, which are placed hypothetically
along the boundary of the conducting object. The major advantages of the proposed tech-
nique are twofold: (i) it provides a substantial reduction in the matrix size, and thus, makes
use of direct solvers efficiently and (ii) it enables the utilization of parallel processing tech-
niques that considerably decrease the overall computation time. We illustrate the applica-
tion of the proposed approach via several 3D electromagnetic scattering problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The Finite Element Method (FEM) has been widely used in the electromagnetic modeling and simulation of electromag-
netic boundary value problems for several decades due to its adaptability to arbitrary geometries and material inhomoge-
neities. However, in applications involving electrically large objects, the FEM—together with other finite methods—yields
‘large’ matrices whose solution may not be feasible even on state-of-the-art computers. Although the resultant matrix is
sparse and can be stored by using a compressed storage scheme, the use of iterative solvers for these matrices usually creates
a heavy burden on CPU memory and time due to the slow and unstable behavior of the convergence, even when accelerated
by means of preconditioners. Hence, alternative techniques, such as the domain decomposition (DD) methods, have been
employed to alleviate this difficulty. A general DD approach, which is based on the divide-and-conquer philosophy, breaks
down a large-scale problem into a number of small sub-problems whose solution is manageable. There are several DD strat-
egies devised for problems governed by partial differential equations. The oldest class of the DD methods is known as
Schwarz Methods [1]. The perspective of the DD method itself is very broad as a research subject, and thus, only a number
of DD approaches that have been utilized in electromagnetic boundary value problems are listed in [2–10].
. All rights reserved.
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In this paper, we present the parallelized ‘‘Characteristic Basis Finite Element Method (CBFEM-MPI),” which is a novel
domain decomposition finite element algorithm for the solution of a wide class of electromagnetic boundary problems.
The proposed technique is non-iterative and is well-suited to the implementation of parallel processing techniques using
such as the Message Passing Interface (MPI) library [11]. Basically, this method utilizes a set of specially defined characteristic
basis functions (CBFs) in conjunction with a domain decomposition scheme that partitions the computational domain into a
number of non-overlapping subdomains. The CBFs—macro-domain basis functions that are constructed in each subdomain by
considering the physics of the problem—have been originally proposed to solve time-harmonic electromagnetic problems in
the context of the Method of Moments (MoM), by using the CBMoM (Characteristic Basis/Method of Moments) approach that
have employed overlapping subdomains [12–14]. The CBFs have also been employed in both the FEM [15] and the Finite Dif-
ference Time Domain (FDTD) method [16], wherein the original domain has been divided into overlapping subdomains. How-
ever, the CBFEM-MPI is distinguished from all previous approaches because of three main reasons: (i) first, its
implementation procedure is based on non-overlapping subdomains; (ii) second, the CBFs are generated in each subdomain
by using a novel approach in which the CBFs are determined by radiating a finite number of fictitious current-elements (viz.,
dipoles in 3D time-harmonic case) located along the boundary of the conducting object; and finally, (iii) the CBFEM-MPI can
be applied to both quasi-static and time-harmonic cases in a straightforward manner. (The quasi-static case is beyond the
scope of this paper, and will be discussed elsewhere.) In this paper, we deal with the problem of electromagnetic scattering
from an arbitrarily shaped conducting object. Two desirable attributes of CBFEM-MPI are: (i) it realizes a significant reduc-
tion in the matrix size in such a way that the resulting matrices can easily be handled by direct—as opposed to iterative—
solvers; and, (ii) it realizes a substantial decrease in the overall computation time due to its parallelizable nature. Hence,
it can handle large-scale problems in a time-efficient manner when run on multiple processors.

This paper is structured as follows: In Section 2, we present the theoretical formulation of the CBFEM-MPI approach in
detail, along with its basic principles of implementation and its parallelized architecture. In Section 3, we present several
numerical applications that demonstrate the performance of the method in the context of the 3D electromagnetic scattering
problems involving a variety of arbitrarily shaped objects. Finally, we draw some conclusions in Section 4 with regard to the
salutary features of the technique proposed in this paper.

2. CBFEM-MPI algorithm

We illustrate the original scattering problem as shown in Fig. 1(a). The open-region geometry of the problem is simulated
by terminating the computational domain with a perfectly matched layer (PML), which is implemented by the locally con-
formal PML approach [17,18]. The electromagnetic scattering problem involving a perfectly conducting object (or scatterer)
can be expressed as a boundary value problem governed by the vector wave equation with given boundary condition (BC) as
follows
r�r�~Es � k2~Es ¼ 0 in XFS ð1:aÞ
with BC : n̂�~Es ¼ �n̂�~Einc on @XS ð1:bÞ
where~Einc and~Es are the incident plane wave and scattered field, respectively. Moreover, XFS and oXS denote the free-space
and the boundary of the scatterer, respectively. It is worthwhile mentioning that (1) is also applicable inside the PML region
(XPML), except for the fact that the real coordinates are just replaced by their complex counterparts calculated via a special
complex coordinate transformation, which is defined in the locally conformal PML method.

In the conventional (or classical) FEM approach employing tetrahedral edge elements, the vector wave equation in (1.a) is
not solved directly; instead, it is transformed into its weak variational form using the weighted residual method as follows
Z

X
ðr �~EsÞ � ðr � ~WÞdX� k2

Z
X

~Es � ~WdX ¼ 0 ð2Þ
where ~W is a vector weight function. Within each element e, the unknown field is approximated as
~Es;eð~rÞ ¼
X6

i¼1

~Nið~rÞEe
i ð3Þ
where Ee
i is the unknown tangential field along the ith edge, and ~Nið~rÞ is the vector shape function for the ith edge. Next, we

substitute (3) into (2), and choose the weight functions to be equal to the shape functions (i.e., ~W ¼ ~Nið~rÞ). After this step, the
weak variational form becomes
Z
Xe
r�

X6

i¼1

~Nið~rÞEe
i

 !" #
� ðr � ~Njð~rÞÞdX� k2

Z
Xe

X6

i¼1

~Nið~rÞEe
i

 !
� ~Njð~rÞdX ¼ 0 ðj ¼ 1;2; . . . ;6Þ ð4Þ
Using (4), we construct the 6 � 6 local elemental matrices, which are assembled over all elements to form the global system
of equations by using the edge connectivity knowledge of the elements. Specifically, the FEM formulations lead to the fol-
lowing sparse global matrix system



Fig. 1. (a) Original scattering problem; (b) CBFEM-MPI approach.
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½A�½e� ¼ ½b� ð5Þ
where the elements of the unknown vector [e] are the scalar tangential fields along the edges, [A] is the global matrix and [b]
is the known right-hand-side (RHS) vector, which is obtained by the imposing the BCs. The details of the FEM solution of the
vector wave equation can be found in [19].

2.1. CBFEM-MPI formulation

The major goal of the CBFEM algorithm is to efficiently solve the same matrix system as that employed in the conven-
tional FEM. Thus, the first step in the CBFEM algorithm is to construct the global matrix system in (5), which corresponds
to the original problem at hand. The CBFEM-MPI approach achieves the efficient solution of the matrix system in (5) by
decomposing the entire computational domain into a number of non-overlapping subdomains, and by employing the CBFs
that are specially tailored to each subdomain. In this non-iterative and parallelizable technique, the unknown tangential
fields are expressed as a series of two types of CBFs, which are weighted with unknown coefficients yet to be determined.
Of these CBFs, the first are constructed inside the subdomains, whereas the second are defined on the interfaces. In other
words, the unknowns are treated separately on each individual subdomain and interface. Next, the Galerkin method, which
employs the CBFs as both basis and testing functions, is realized to transform the global matrix system into a ‘‘smaller” ma-
trix, which we call as the reduced-matrix. The most appealing feature of the proposed approach is that the reduced-matrix
can still be solved by direct solvers (such as the LU factorization), even if the original problem size is very large. Therefore, in
contrast to iterative solvers, multiple right-hand-side vectors (i.e., multiple illuminations in the scattering problem) can be
handled efficiently in CBFEM with little additional computational burden. After solving the reduced-matrix for the unknown
coefficients, the tangential fields inside the entire computational domain are obtained by substituting the coefficients into
the series expressions.

Without loss of generality, we illustrate the CBFEM-MPI technique using the cross-sectional model as shown in Fig. 1(b),
which is simply the equivalent of that in Fig. 1(a). We begin by suitably partitioning the original computation domain into a
number of subdomains. The subdomains may be created by employing various partitioning schemes, such as by slicing the
entire domain along a single direction, or by applying a puzzle-like division. However, the type of the partitioning scheme
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should be selected carefully for the geometry at hand to minimize the size of the reduced-matrix, because different schemes
may generate different number of interface edges, which are directly linked with the size of the reduced-matrix (this will be
evident from the discussion in Section 2.1.3). Our next step is to place a finite number (M) of fictitious dipoles—or current-
elements in general—on the boundary of the scatterer, as illustrated by the black arrows in Fig. 1(b).

The fields that are radiated by these dipoles can be conveniently used as CBFs because they not only form the natural basis
functions for the field distribution inside the entire computational domain, but they also incorporate the physics of the prob-
lem. The theoretical basis of the CBFEM-MPI approach is briefly discussed in Appendix A. It is useful to remark that the con-
cept of fictitious sources has also been used in a number of integral-equation-based numerical techniques for efficient
solution of electromagnetic problems. For instance, the Fast Multipole Method expands the Green’s function using a multi-
pole expansion, which groups sources that lie close together and treat them as if they are a single source, and accelerates the
matrix-vector multiplications needed in the iterative solvers in an efficient manner [20]. Furthermore, in the Discrete
Sources Method, an unknown field in a domain under consideration is presented as a finite linear combination of the fields
of some fictitious discrete sources placed outside this domain [21].

In the CBFEM-MPI algorithm, the dipoles can easily be chosen to lie along the edges of the usual finite element mesh per-
taining to the boundary of the object (see Fig. 2(a)). Specifically, the directions of the dipoles are selected along the unit vec-
tors that denote the directions of the tangential fields along the edges of the elements—shown in Fig. 2(b)—located on the
boundary of the scatterer. Thus, it is evident that the task of determining the positions of the dipoles does not require an
additional effort, since it is incorporated into the nature of the FEM. Even if the number of dipoles that are chosen along
the boundary is large, as is the case of ‘large’ objects or fine meshes, the number of effective dipoles is limited by using a
technique, which selects the most contributing dipoles for each point under consideration, as well as by employing the sin-
gular value decomposition (SVD) approach with a threshold to reduce the redundancy in the CBFs created by the dipoles (see
below).

The CBFEM-MPI algorithm has 3 main steps, and they are described below.

2.1.1. Generation of CBFs along interfaces (Step-1)
We first determine the CBFs (or excitation functions), along each individual interface (Cw), which has no common edges

with all other interfaces. Clearly, we obtain the CBFs along each ‘dual-’ (e.g. Cw where w = {12,23} in Fig. 1(b)), ‘triple-’ and
‘quadruple-’ interfaces where two, three and four subdomains intersect, respectively. It is useful to note that the mesh par-
titioning algorithm of the CBFEM-MPI has been developed in such a way that at most four subdomains can intersect. In order
to find the CBFs, we first compute the fields of the dipoles, which radiate in the absence of the scatterer, at the mid-points of
the edges located on the interfaces. The field created by an arbitrarily oriented dipole inside the free-space, as well as in the
PML region, is briefly formulated in Appendix B, for the sake of completeness. While calculating the field at each point on an
individual interface, we do not consider all the dipoles, but only the pioneering dipoles that are located nearest to that inter-
face. More specifically, if the interface under consideration has NCw

points (i.e., mid-points of the edges), then, for each point,
we choose at most NCw

number of dipoles that are closest to that point. This is because the dipoles that are located at a dis-
tance far away from an interface have a negligible effect on that interface, when compared to the effects of the dipoles that
are very close to that interface. Another reason is that we employ the SVD approach with a threshold to reduce the redun-
Fig. 2. (a) Illustration of dipole positions on the boundary of object; (b) tetrahedral edge element.
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dancy in the basis functions, and the SVD procedure retains at most NCw
basis functions if the number of dipoles is larger than

the number of interface points. This dipole selection scheme helps to decrease the number of dipoles, and thus, the redun-
dancy in the basis functions prior to the application of the SVD procedure. The salutary feature of this scheme becomes more
clearly evident if the total number of dipoles is much larger than the number of points on each individual interface (i.e.,
M � NCw

), which usually occurs for electrically large objects.
After determining the pioneering dipoles for each interface, we calculate the initial CBFs ½EðiÞCw

� on each individual interface,
where the superscript (i) refers to the ID of the dipole. It is worthwhile to add this remark here that these functions refer to
the scalar tangential fields along the edges located on the interfaces. Specifically, the vector field along each edge is repre-
sented by the multiplication of the scalar function by the unit vector directed along that edge. Then, we apply the SVD pro-
cedure to remove the redundancy in the CBFs, by orthogonalizing them. We first let
½RCw
�NCw

�Mw
¼ Eð1ÞCw

h i
Eð2ÞCw

h i��� ��� � � � EðMwÞ
Cw

h i���� �
NCw
�Mw

ð6Þ
where NCw
is the number of points along each interface Cw, and Mw is the number of pioneering dipoles, which is usually

equal to NCw
as mentioned above. Using the SVD procedure, (6) can be expressed as
½RCw
�NCw

�Mw
¼ ½UCw

�NCw
�Mw
½KCw
�Mw�Mw

½VCw
�TMw�Mw

ð7Þ
The ordered singular values of ½RCw
�NCw

�Mw
are basically the entries of the diagonal matrix ½KCw

�Mw�Mw
¼ diagðr1;r2; . . . ;rMw

Þ.
We retain the entries whose singular values are above a threshold. In other words, we retain the first KCw

ðKCw
< MwÞ CBFs

such that r1;r2; . . . ;rKCw
< rthresh. We have found that a choice of the SVD threshold in the range from 1e-4 to 1e-5, yields

accurate results. The reduced-matrix starts becoming ill-conditioned if the SVD threshold is decreased much below 1e-6. Fi-
nally, we express the post-SVD CBFs associated with each interface as follows
½UCw
�NCw

�KCw
¼ uð1ÞCw

h i
uð2ÞCw

h i��� ��� � � � u
ðKCw

Þ
Cw

h��� i� �
NCw
�KCw

ð8Þ
This step can be performed in parallel for each individual interface.

2.1.2. Generation of CBFs in subdomains (Step-2)
We construct the CBFs in each subdomain by solving the vector wave equation, with certain excitation functions located

on the boundaries of the subdomain, and there are two alternate ways for constructing these functions. One possible ap-
proach is to use some combinations of the post-SVD CBFs derived in Step-1. Another approach, which is more efficient than
the above, is to determine new excitation functions along the boundaries of each subdomain using a similar procedure given
in Step-1. Clearly, we find the points on the boundary of the jth subdomain by concatenating the points on the interfaces
where the jth subdomain has been terminated (i.e., Cj = [wCw where Cw �Xj). Following the procedure in Step-1, for the
jth subdomain, we compute KCj

number of post-SVD excitation functions along Cj using the pioneering dipoles correspond-
ing to that interface, as follows
½UCj
�NCj

�KCj
¼ uð1ÞCj

h i
uð2ÞCj

h i��� ��� � � � u
ðKCj

Þ
Cj

�����
�� �

NCj
�KCj

ð9Þ
where NCj
is the number of points along Cj. Next, we solve the vector wave equation by using the excitation functions in (9)

to find KCj
number of CBFs that span the jth subdomain. That is, in the jth subdomain, we solve the following sub-problem for

each ½uðiÞCj
� along the boundary Cj ði ¼ 1;2; . . . ;KCj

Þ

r�r�~Es
j � k2~Es

j ¼ 0 ð10Þ

BCs : n̂�~Es
j ¼ uðiÞCj

h i
âCj

on Cj

ðand global BCs in ð1:bÞÞ
where âCj
refers to the unit vector directed along each edge on Cj. It is obvious that only the RHS vector corresponding to the

new BC need be modified to calculate each new solution. Hence, multiple RHS vectors can be handled efficiently by first uti-
lizing the LU decomposition, and then using only forward and backward substitutions, without using Gaussian elimination
each time. Then, the initial CBFs in each subdomain can be expressed as follows
½Rj�Nj�KCj
¼ Eð1Þj

h i
Eð2Þj

h i��� ��� � � � E
ðKCj

Þ
j

�����
�� �

Nj�KCj

ð11Þ
where Nj is the number of points inside the jth subdomain, excluding its boundaries. Next, we resort to the SVD technique
once again to make sure that the resulting reduced-matrix is well-conditioned. The SVD approach transforms (11) into the
following form
½Rj�Nj�KCj
¼ ½Uj�NCj

�KCj
½Kj�KCj

�KCj
½Vj�TKCj

�KCj
ð12Þ
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After retaining the first Kj number of CBFs in a way such that the singular values of (12) are below a threshold value, the final
post-SVD CBFs for the jth subdomain become
½Uj�Nj�Kj
¼ uð1Þj

h i
j uð2Þj

h i
j . . . j u

ðKjÞ
j

h i� �
Nj�Kj

ð13Þ
In common with Step-1, the SVD thresholds in this step can be set to either 1e�4 or 1e�5 to get accurate results. This step
can also be realized in parallel for each subdomain.

It is useful to note that the last SVD operation, which is applied to the CBFs inside the subdomains and given in (12), may
be eliminated by using an ad-hoc approach, outlined below, to reduce the computation time. However, we should emphasize
again that this SVD operation guarantees the well-conditioned nature of the reduced-matrix, and thus the accuracy of the
results, in all situations. The last SVD procedure can be bypassed by first increasing the threshold value of the SVD operation
that is applied to find the excitation functions given in (9), and then choosing the first Kj < KCj

number of basis functions
from the set expressed in (11). The reason for the selection of the first Kj bases is that the basis functions have already been
sorted out in (9) with respect to their singular values. In this approach, the SVD threshold that is used in (9) can be increased,
for example, to 1e�3, to increase the independency of the basis functions, as well as to decrease their numbers. In addition, Kj

can be set to a ratio of KCj
, such as 85–95%. Since this approach may yield somewhat less-accurate results—depending on the

values of these parameters—a compromise should be made between the computation time and the desired accuracy.

2.1.3. Construction of the reduced-matrix system (Step-3)
Let us now assume that we have three subdomains and two individual interfaces (i.e, Cw1 and Cw2), for the sake of sim-

plicity. Then, the system of linear equations in (5) can be arranged by treating the entries for each subdomain and interface
separately, as follows
½A11� ½0� ½0� ½A1Cw1 � ½A1Cw2 �
½0� ½A22� ½0� ½A2Cw1 � ½A2Cw2 �
½0� ½0� ½A33� ½A3Cw1 � ½A3Cw2 �
½ACw11� ½ACw12� ½ACw13� ½ACw1Cw1 � ½ACw1Cw2 �
½ACw21� ½ACw22� ½ACw23� ½ACw2Cw1 � ½ACw2Cw2 �

2
66666664

3
77777775

½e1�
½e2�
½e3�
½eCw1 �
½eCw2 �

2
66666664

3
77777775
¼

½b1�
½b2�
½b3�
½bCw1 �
½bCw2 �

2
66666664

3
77777775

ð14Þ
where each [Aab] represents the coupling between the unknowns in the inner part of the ath subdomain or interface, and the
unknowns in the inner part of the bth subdomain or interface. In this section, a and b are assumed to be ‘dummy’ subscripts
corresponding to the subdomain and/or interface IDs. We note that the sub-matrices in (14) do not overlap with each other.

The next step is to express the unknowns (i.e., tangential fields) in the each subdomain and on each interface as a
weighted sum of CBFs derived in Step-1 and 2, respectively, in terms of a set of coefficients yet to be determined, as follows
½ej�Nj�1 ¼
XKj

i¼1

cðiÞj uðiÞj

h i
Nj�1

ð15Þ

½eCw
�NCw

�1 ¼
XKCw

i¼1

cðiÞCw
uðiÞCw

h i
NCw
�1

ð16Þ
where cðiÞj and cðiÞCw
are the weight coefficients of the CBFs belonging to each subdomain and interface, respectively.

Next, we utilize the Galerkin approach to derive the reduced-matrix. We first substitute (15) and (16) into the matrix sys-
tem in (14) to find an over-determined system. Then, we left-multiply both sides of this system by diagð½U1�T;
½U2�T; ½U3�T; ½UCw1 �

T
; ½UCw2 �

TÞ to get the reduced-matrix system as follows
½S�

½c1�K1�1

½c2�K2�1

½c3�K3�1

½cCw1 �KCw1
�1

½cCw2 �KCw2
�1

2
66666664

3
77777775
¼

½g1�K1�1

½g2�K2�1

½g3�K3�1

½gCw1
�KCw1

�1

½gCw2
�KCw2

�1

2
66666664

3
77777775

ð17Þ
where [S] is a K � K reduced-matrix whose structure is in the same form of [A] given in (14). Here, the matrix size is
K ¼

P
wKCw

þ
PNd

j¼1Kj

� �
, where Nd is the number of subdomains. Each sub-matrix of [S] is computed by
½Sab�Ka�Kb
¼ ½Ua�TKa�Na

½Aab�Na�Nb
½Ub�Nb�Kb

ð18Þ
Also, each entry of the new RHS vector in (17) is obtained by
½ga�Ka�1 ¼ ½Ua�TKa�Na
½ba�Na�1 ð19Þ
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At this stage, it is convenient to further reduce the size of the reduced-matrix by utilizing the Schur-complement ap-
proach [22], which decouples the unknowns on the interfaces. Therefore, the size of the reduced-matrix using the Schur ap-
proach is equal to the total number CBFs along the interfaces. Although the sparse reduced-matrix equation in (17) is usually
small enough to solve it by using direct solvers, the Schur approach is suggested since it parallelizes the solution of the re-
duced-matrix, and thus, realizes direct solution techniques in a time-efficient manner, which is obviously useful in handling
larger problems. Prior to the application of the Schur-complement approach, the matrix system in (17) can be arranged by
concatenating the interface unknowns as shown below
½S11� ½0� ½0� ½S1C�
½0� ½S22� ½0� ½S2C�
½0� ½0� ½S33� ½S3C�
½SC1� ½SC2� ½SC3� ½SCC�

2
66664

3
77775
½c1�K1�1

½c2�K2�1

½c3�K3�1

½cC�KC�1

2
666664

3
777775 ¼

½g1�K1�1

½g2�K2�1

½g3�K3�1

½gC�KC�1

2
666664

3
777775 ð20Þ
where C = [wCw. The Schur-complement system for (20) is given by
½P�½cC� ¼ ½y� ð21Þ
where
½P� ¼ ½SCC� �
XNd

i¼1

½SCi�½Sii��1½SiC� ð22Þ

½y� ¼ ½gC� �
XNd

i¼1

½SCi�½Sii��1½gi� ð23Þ
After solving (21) for the unknown coefficients corresponding to the interfaces, the unknown coefficients for each subdo-
main can be calculated by solving the following matrix system
½Sii�½ci� ¼ ½hi� ð24Þ
where
½hi� ¼ ½gi� � ½SiC�½cC� ð25Þ
The system of equations in (24) can be solved in a parallel manner. We should add a final remark here that although the
matrices in (21) and (24) are denser than the reduced-matrix in (17), they are smaller and better-conditioned, thus, can be
conveniently handled by performing full-matrix direct solvers. Final step is to substitute the computed coefficients into (15)
and (16), and to obtain the field distribution inside the entire domain.
Fig. 3. Parallel architecture of CBFEM-MPI.
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2.2. Parallel architecture of the CBFEM-MPI

The CBFEM-MPI algorithm has been parallelized in the C language using the Message Passing Interface (MPI) library [11],
which is a library standard to perform parallel processing techniques using a distributed-memory model. In the CBFEM-MPI
code, the master process is responsible for distributing the parallel jobs to the available processors (slaves), and for the task-
timing in the code sequence. Multiple slave processes communicate with the master process through the MPI routines (such
as MPI_Recv, MPI_Send, etc.) and certain data files. The CBFEM-MPI algorithm can be divided into five main phases, called
modules, as illustrated in Fig. 3. Initially, Module-1 performs the mesh generation and partitioning algorithms using tetrahe-
dral edge elements, and constructs the global and sub-matrices, which are given in (14), in compressed sparse row (CSR)
format. Then, the Modules 2 and 3 realize the Steps 1 and 2 in parallel for each interface and subdomain, respectively,
and can be initiated concurrently. The Module-4, corresponding to Step-3, can also be parallelized, for each subdomain, in
the solution of sub-matrices given in (24). Finally, in Module-5, the radar cross-section (RCS) is calculated using the field
distribution inside the entire computational domain.
Fig. 4. Bistatic RCS profile of sphere: (a) / = 0� plane and (b) / = 90� plane.



Table 1
Number of CBFs in each subdomain for sphere.

X1 X2 X3 X4 X5 X6 X7 X8

Pre-SVD 1858 2094 2093 1861 2348 1784 1790 2367
Post-SVD 1355 1724 1714 1361 1573 1325 1324 1603

X9 X10 X11 X12 X13 X14 X15 X16

Pre-SVD 2345 1766 1778 2363 1858 2088 2090 1855
Post-SVD 1527 1307 1311 1581 1354 1722 1717 1361
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3. Numerical examples

In this section, we present the results of some numerical experiments to test the performance of the CBFEM-MPI tech-
nique in 3D scattering problems. In these examples, we employ an FEM mesh generated by using tetrahedral edge elements
whose edge size is approximately set to k/10, assuming that the wavelength k is 1 m. In the CBFEM-MPI code, we have uti-
lized the LAPACK2 and SuperLU3 packages to realize full and sparse matrix operations, respectively.

The first example is a benchmark scattering problem where a plane wave, ~Einc ¼ âx expð�jkzÞ, is incident to a sphere
whose diameter is 6k. The original domain is partitioned into 16 subdomains, as shown in the figure that is the inset of
Fig. 4. This partitioning scheme creates 16,064 edges pertaining to the interfaces. For the original problem, the number of
unknowns (edges or matrix size) is 313,958. Total number of dipoles chosen along the boundary of the sphere is 13,828.
The CBFEM-MPI code yields a reduced-matrix whose size is 16,016, which is considerably less than the original matrix size,
when the Schur-complement approach is implemented. The size of the reduced-matrix also represents the total number of
CBFs along the interfaces. The number of CBFs used in the subdomains is tabulated in Table 1 to better grasp how small the
matrices given in (22) and (24) are, so that they can conveniently be handled while performing the direct solution and in-
verse operations. Finally, the bistatic RCS profile of the sphere is plotted in Fig. 4, which also compares it with both the con-
ventional FEM and the Mie series results [23]. The profiles of the CBFEM-MPI are very close to those of the conventional FEM.
Also, we point out that although there are small discrepancies between the profiles of the CBFEM-MPI and the Mie series,
they can be improved by refining the mesh. It is worthwhile to note that it is more realistic to compare the CBFEM-MPI re-
sults with those computed by the conventional FEM to measure the performance of the proposed algorithm, because the
main concern of the present method is to efficiently solve the same matrix system as that employed in the conventional
FEM. For this purpose, we can also compute the mean-square percentage difference (i.e., Err ¼

P
XjE

CBFEM�
EFEMj2=

P
XjE

FEMj2) between the field distributions (i.e., tangential fields along the edges) of the conventional FEM and the
CBFEM-MPI inside the ‘‘entire” computational domain to show that CBFEM-MPI fully recovers the original solution (namely,
the solution of the conventional FEM) in both near- and far-field. In this example, we find that the percentage difference is on
the order of 0.4876%.

The second example considers the problem of scattering from a cube whose edge length is 5k, assuming that the incident
plane wave is ~Einc ¼ ây expð�jkzÞ. The entire domain is partitioned into 24 subdomains (see the inset of Fig. 5), yielding
19,405 interface edges. The original matrix size is 624,462. The CBFEM-MPI code employs 23,600 dipoles located along
the boundary of the cube. The size of the reduced-matrix constructed via the Schur approach is only 19,006. The bistatic
RCS profile is plotted in Fig. 5, together with the measured results given in [24].

The third example deals with a missile whose radome diameter is 2k and length is 21k, with an axial (nose-on) plane
wave incidence ð~Einc ¼ ây expðjkzÞÞ. The computational domain is decomposed into 25 subdomains, as shown in Fig. 6, gen-
erating 23,003 interface edges. The number of unknowns in this problem is 563,147, and the number of dipoles is 39,582. The
size of the reduced-matrix is obtained as 22,706. We plot the bistatic RCS profile in Fig. 6, and compare the results with those
calculated by the forward–backward domain decomposition method proposed in [9].

The fourth example involves the problem of scattering from a square plate whose edge length is 10k, with a normal plane
wave incidence ð~Einc ¼ ây expðjkzÞÞ. The original problem, which has 845,643 unknowns, is divided into 32 subdomains, as
shown in Fig. 7. The number of dipoles on the boundary of the plate is 19,041. The CBFEM-MPI algorithm reduces the matrix
size into 24,225. The bistatic RCS profile is plotted in Fig. 7, which is compared with the Physical Optics (PO) method, as well
as the forward–backward domain decomposition method given in [9]. It is well-known that the PO method is only reliable
for aspect angles in the range h 6 20�.

Finally, we present the results of the scattering problem involving two spheres, which are oriented as in Fig. 8, to illustrate
that the CBFEM-MPI method can also be applied for multiple-scatterers in a straightforward manner. The diameter of each
sphere is 1k, and the separation between the spheres is 0.5k. The original problem is partitioned into 4 subdomains. The
number of dipoles on the boundaries of the spheres is 5232. The original matrix size is 108,057, whereas the size of the re-
duced-matrix is 2903. We plot the bistatic RCS profile in Fig. 8, which also compares it with the conventional FEM result. In
2 http://www.netlib.org/clapack/.
3 http://crd.lbl.gov/~xiaoye/SuperLU/.

http://www.netlib.org/clapack/
http://crd.lbl.gov/~xiaoye/SuperLU/


Fig. 5. Bistatic RCS profile of cube at / = 90� plane.

Fig. 6. Bistatic RCS profile of missile at / = 90� plane.
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this example, we have again computed the percentage difference between the field distributions of the CBFEM-MPI and the
conventional FEM, and have found it to be only 0.4596%.

The numerical results in this section demonstrate that the CBFEM-MPI has the ability to reduce the matrix size substan-
tially. We observe that its results are close to the reference results, and this leads us to conclude that the accuracy of the
algorithm is validated. Finally, in order to give an idea about the time-efficiency of the algorithm, the CPU time for the last
example, which is indeed the smallest example in this section, is 13 min on a LINUX 2.4 GHz cluster with 4 processors. How-
ever, it is approximately 5 h for the conventional FEM employing a standard iterative solver (such as biconjugate gradient
method). The discrepancy between the relative efficiencies of the two approaches is expected to increase as we increase
the number of unknowns, especially when the convergence of the iterative solver is slow, owing to the increase in the con-
dition number of the original matrix. We estimate that the solution of the largest problem (i.e., fourth example), which takes
approximately 8.5 h using the CBFEM-MPI code when 32 processors are used, might require several days if we would use



Fig. 7. Bistatic RCS profile of plate at / = 0� plane.

Fig. 8. Bistatic RCS profile of two-spheres.
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standard solvers. It is obvious that ‘‘small” matrices can be handled by using direct solvers in the conventional FEM. How-
ever, for large matrices, it is no longer possible to employ these solvers, and we must resort to iterative solvers instead. Thus,
the time comparison, given above, is intended to provide a rough estimate of the relative computational efficiencies of the
proposed technique when compared with the conventional FEM employing iterative solvers.

4. Conclusions

We have introduced a novel finite element algorithm for efficient solution of electromagnetic scattering problems, which
utilizes the concepts of domain decomposition and characteristic basis functions. We have proposed a new procedure for
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systematic calculation of the characteristic basis functions using current-elements located on the boundary of the object. We
have presented the parallelized structure of the algorithm via the MPI library, and have shown that the algorithm can be
successfully implemented on multiple processors in a time-efficient manner. We have also demonstrated that the most
distinctive feature of the proposed algorithm is its capability to achieve a considerable reduction in the matrix size, which,
in turn, allows us to make use of the direct rather than iterative solvers that are currently in use. We have presented the
results for scattering problems involving a number of relatively large and arbitrarily shaped objects. Finally, we remark
that the approach presented in this paper is quite general, and can also applied to problems involving both pure dielectric
as well as dielectric-coated PEC objects. The results obtained to-date are quite encouraging and will be published in the near
future.
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Appendix A. This section aims to establish a theoretical basis for the CBFEM-MPI approach. Specifically, it tries to answer
why the fields, which are created by the current-elements (i.e., dipoles in 3D and line-sources in 2D) on the scatterer
boundary, can be used as the CBFs along the interfaces. The formulations are presented in 2D for the sake of simplicity, and
can also be generalized to the 3D case.

By analogy to the 3D scattering problem, the 2D scattering problem can be solved by placing a finite number of line-
sources on the surface that originally has been the boundary of the conducting object. Assuming the TMz mode where only
the z-component of the electric field exists, the field values that are created by the line-sources at points along the interfaces
are calculated using the following expression [23]
Ezð~rÞ ¼ �
kg
4

IHð2Þ0 ðkj~r �~r0jÞ ðA:1Þ
where Hð2Þ0 is the Hankel function of the second kind of zeroth order (viz., Green’s function), g is the intrinsic impedance of
the medium,~r0 and~r are the position vectors of the line-source and interface point, respectively, and I is the current on the
line-source.

In order to explain why the fields of the line-sources can be chosen as the basis functions in the CBFEM-MPI approach, it is
necessary to express the scattered field outside a conducting object in terms of an integral expression. Let us assume that we
have an infinitely long, along z-direction, conducting cylinder of arbitrary cross-section (refer to Fig. 1). The scattered field is
denoted by Es

z, and satisfies the scalar homogeneous Helmholtz equation in the region outside the cylinder
r2Es
z þ k2Es

z ¼ 0 ðA:2Þ
subject to the boundary condition Es
z ¼ �Einc

z on the boundary of the object (oXs), where Einc
z is the incident plane wave.

An alternative formulation can be obtained by using the fact that the incident wave induces currents on the boundary of
the cylinder. This current, which can be expressed as~J ¼ âzJzðx; yÞ, behaves as the source creating the scattered field. Here,
the current density Jz can be expressed as a linear combination of the current-elements (Jzdl) on oXs. Each current-element
creates the following field
Jzdl! � kg
4

JzdlHð2Þ0 ðkj~r �~r0jÞ ðA:3Þ
Therefore, using the superposition principle, which is the linear relationship between the scattered field and the current den-
sity function, the scattered field is expressed as follows
Es
z ¼ �

kg
4

I
Xs

JzHð2Þ0 ðkj~r �~r0jÞdl ðA:4Þ
The integral expression in (A.4) can be simplified by approximating the contour oXs in terms of line segments Dli, and
using finite-width current-elements Ji

zDli, where Ji
z denotes the value of Jz at the ‘center’ of the line segment Dli, as

follows
Es
z � �

kg
4

X
i

Ji
zDliH

ð2Þ
0 ðkj~r �~r0ijÞ ðA:5Þ
Thus, the scattered field can be interpreted as a weighted sum of basis functions (i.e., Hð2Þ0 ðkj~r �~r0ijÞ) with some coefficients
(i.e., Ji

zDli). In other words, the fields radiated by the current-elements form the natural basis functions of the scattered field.
Hence, we conclude that the CBFs that are employed in the CBFEM-MPI approach are well-suited to the physics of the
problem.
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Appendix B. In this section, we present a general formulation regarding the field of an arbitrarily oriented infinitesimal
dipole at a point in free-space, as well as inside the PML region. First, we assume that the medium is free-space. The electric
field of an infinitesimal dipole that is oriented along z-direction and is of moment Il, where I is the constant current along the
dipole and l is the length, is expressed in spherical coordinates as follows [23]
Er ¼
gIl

2pr2 1þ 1
jkr

� �
cos h expð�jkrÞ ðB:1aÞ

Eh ¼
jkgIl
4pr

1þ 1
jkr
� 1

ðkrÞ2

 !
sin h expð�jkrÞ ðB:1bÞ

E/ ¼ 0 ðB:1cÞ
These equations can be generalized for a dipole oriented along in an arbitrary direction. We first rotate the dipole by an arbi-
trary angle a, and express the fields as rotated versions of the original fields in (B.1). In the rotated coordinate system, the
new angles (a,b) correspond to the angles (h,/) in the original spherical coordinate system, where b is referenced to the x-
axis. The value of r, which represents the distance between the origin and the point at which the field is to be calculated, is
identical in both original and rotated coordinate systems. The transformations of the fields in (B.1) to those in the rotated
coordinate system can be simply written as
Er ¼
gIl

2pr2 1þ 1
jkr

� �
cosa expð�jkrÞ ðB:2aÞ

Ea ¼
jkgIl
4pr

1þ 1
jkr
� 1

ðkrÞ2

 !
sin a expð�jkrÞ ðB:2bÞ
In order to find the definitions of the terms (cosa,sin a), we use the definition of the dot product
cos a ¼ âr � âd ðB:3Þ
where âr and âd are the unit vectors directed along r and the dipole orientation, respectively. Next, we use the following trig-
onometric identity
sina ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðâr � âdÞ2

q
ðB:4Þ
Finally, we substitute (B.3) and (B.4) into (B.2) to calculate the field of the dipole.
Inside the PML region, the above-mentioned approach is followed in the same way to compute the field of the dipole, but

except that the field is forced to decay to mimic the wave behavior inside the PML region. This decaying behavior is easily
satisfied by using the locally conformal PML method. If the point is inside the PML region, the field in (B.2) is multiplied by a
monotonically decreasing exponential function exp[�f(n)], which is equivalent to the true PML action providing an ‘artificial
decay’ inside the PML region. Here, f(n) is the same function that is defined in the complex coordinate variations of the locally
conformal PML method, and is expressed as
f ðnÞ ¼ anm

mk~rout �~rinkm�1 ðB:5Þ
where n is the parameter defined by n ¼ k~r �~rink, a is a positive parameter and m is a positive integer. Moreover,~rin and~rout

are the position vectors of the points located on the inner (oXin) and the outer boundaries of the PML, respectively, where the
former is the solution of the minimization problem: min~rin2@Xin

k~r �~rink. The details of the locally conformal PML technique
can be found in [17,18]. It is worthwhile to mention that these computations, which determine the CBFs inside the PML re-
gion, do not create any burden in the CBFEM-MPI algorithm, because the above-mentioned parameters are already calcu-
lated for each PML point in the matrix construction phase of the algorithm.
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